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Abstract

This paper proposes an efficient technique for automatic localization of ear

from side face images. The technique is rotation, scale and shape invari-

ant and makes use of the connected components in a graph obtained from

the edge map of the side face image. It has been evaluated on IIT Kan-

pur database consisting of 2672 side faces with variable sizes, rotations and

shapes and University of Notre Dame database containing 2244 side faces

with variable background and poor illumination. Experimental results re-

veal the efficiency and robustness of the technique.

Keywords: Skin Segmentation, Biometrics, Ear Localization, Ear

Recognition, Connected Components.

1. INTRODUCTION

Ear biometrics has received much attention in recent years because of its

consistent behaviour over the age. Unlike face, ear does not get changes in

its shape with change in expression or age. It remains fixed at the middle

of the side face with predictable background whereas face images need to
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be captured under controlled background to achieve good recognition perfor-

mance. Moreover, size of the ear is larger than fingerprint, iris, retina etc and

smaller than face. It can be acquired easily without the cooperation of the

subject. For an efficient ear recognition system, it is required to detect the

ear efficiently in an automatic manner from the captured image. Detection

of ears from an arbitrary side face image is a challenging problem because

ear images may vary in scale and pose (due to in-plane and out-of-plane

rotations) under various viewing conditions.

Ear recognition consists of two major steps and they are (i) Ear detection

and (ii) Recognition. Most of the well known ear recognition techniques

have focussed on recognition on manually cropped ears. There exist a few

techniques to detect ear automatically. Most of these techniques can detect

the ear only when side face image contains a small background around the ear.

But these techniques are not very efficient, particularly when side face images

are affected by scaling and rotation (pose variations). Moreover, they are

not fully automatic and fast enough to be deployed in realtime applications.

However, it is often required, specially in non-intrusive applications, to detect

the ear from a whole side face image which is affected due to scale and pose

variations.

This paper proposes an efficient ear localization technique which over-

comes these issues and is invariant to scale, rotation and shape. The tech-

nique makes use of connected components of a graph constructed with the

help of edge map of the side face image to generate a set of probable ear

candidates. True ear is detected by performing ear identification using a

rotation, scale and shape invariant ear template.
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Rest of the paper is organized as follows. Section 2 discusses some well

known techniques for automatic ear detection. Section 3 briefly describes a

skin color model which has been used for skin segmentation in the proposed

technique. Next section presents the proposed technique. Rotation, scale and

shape invariance of the proposed technique has been discussed in Section 5.

Experimental results are analyzed in Section 6. Conclusions are given in the

last section.

2. LITERATURE REVIEW

The first well known technique for detecting ear with the help of de-

formable contours is due to Burge and Burger [1]. Since contour initial-

ization in this technique needs user interaction, ear localization is not fully

automatic. Hurley et al. [2] have used force field technique to get the ear

location. It is only applicable when a small background is present in ear im-

age. A template based technique has been proposed by Chen and Bhanu [3].

The technique represents a model template using an averaged histogram of

shape index and is applicable to 3D ear biometrics. In [4], Yan and Bowyer

have used two-line landmark to detect ear where one line is taken along the

border between the ear and the face and the other line from the top of the

ear to the bottom. The 2D ear localization technique proposed by Alvarez

et al. [5] uses ovoid and active contour (snake) [6] models. Ear boundary is

estimated by fitting the contour of an ear in the image by combining snake

and ovoid models. This technique requires an initial approximated ear con-

tour to execute and hence cannot be used in fully automated ear recognition

system. Yan and Bowyer [7] have proposed another technique by considering
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a predefined sector from the nose tip as the probable ear region. The tech-

nique first computes the ear pit using the curvature information obtained

from 3D data and uses its boundary to initialize active contour which de-

tects the ear boundary. It fails if the ear pit is occluded. Ansari and Gupta

[8] have presented an ear detection technique based on edges of outer ear

helices. It solely relies on the parallelism between the outer helix curves and

does not use any structural information present in inner part of the ear and

hence, it fails if the helix edges are poor. Yuan and Mu [9] have proposed

a technique based on skin-color and contour information. It detects ear by

roughly estimating the ear location and by improving the localization using

contour information. It considers ear shape elliptical and fits an ellipse to

the edges to get the accurate position of the ear. Another ear localization

technique which exploits the elliptical shape of the ear is proposed in [10].

But the assumption of elliptical ear shape for all subjects may not be true

and may not help in detecting the ear, in general. As shown in Fig. 1, these

techniques may correctly approximate the ear boundaries for round and oval

shapes but may fail in case of triangular and rectangular shapes. Moreover,

assumption of elliptical ear shape restricts the use of these techniques to con-

trolled environment as the presence of background objects may produce false

positives.

In [11], Sana et al. have given a template based ear detection technique.

To detect ears at different scales, ear templates of different sizes are main-

tained. However, in practice, any predefined set of templates may not be

able to handle all situations. In [12, 13], there are two techniques for ear

localization which are also based on template matching. In these techniques,
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(a) Round (b) Oval (c) Triangular (d) Rectangular

Figure 1: Ear Shapes

an ear template which is created off-line is resized to obtain a template of

suitable size. Resizing is done using the size of the skin part of side face

image which works well when side face includes only facial parts. But while

capturing the side face, an image may include other skin parts such as neck.

This makes the size of the skin area larger than the actual which leads to an

incorrect resizing of the ear template and in turn, it produces an erroneous

ear localization. Attarchi et al. [14] have proposed an ear detection technique

based on the edge map. It relies on the hypothesis that the longest path in

edge image is the outer boundary of the ear. It works well only when there

is small background around the ear and fails if ear detection is carried out in

whole side face image.

A cascaded AdaBoost based ear detection approach has been proposed

in [15]. The technique uses Haar-like rectangular features as the weak clas-

sifiers. AdaBoost is used to select good weak classifiers and then to combine

them into strong classifiers. A cascade of classifiers is built which works

as the final detector. In [16], ear localization has been proposed which is

based on hierarchical clustering of the edges. To identify the edge cluster

related to ear, the technique assumes approximate size of the ear cluster.

Because of this, it works well when scale of the side face image does not
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vary much. In presence of scale variation, cluster size of the ear needs to be

adjusted which may not be possible without user intervention. In [17], an

ear detection technique using the image ray transform has been presented.

The transform is capable of highlighting the tubular structures of the ear

such as helix. The technique exploits the elliptical shape of the helix to per-

form the ear localization. However, such an assumption of elliptical shape

of the ear may be very rigid. Ibrahim et al. [18] have employed a bank of

curved and stretched Gabor wavelets (popularly called banana wavelets) for

ear detection. A technique which is based on skin segmentation and graph

connected components has been proposed in [19]. The technique uses con-

nected components of a graph constructed using the side face edge map for

ear localization. It uses average vertex degree measure of a graph component

for ear localization and assumes that the graph component with the largest

average vertex degree represents the ear. However, often this criterion results

into a false ear detection. It is due to the fact that in presence of noise or

poor skin segmentation, a connected component not representing ear may

also get the highest value of average vertex degree.

3. COLOR BASED SKIN SEGMENTATION

This section presents a color based technique to segment skin and non-

skin regions. It is similar to the skin segmentation technique proposed in [20]

which has used 1976 CIE Lab color space for image representation. However,

in this paper we have represented images in YCbCr space because it is per-

ceptually uniform [21] and is widely used in video compression standards

such as JPEG and MPEG [22].
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The technique is capable of adapting different skin colors and lighting

conditions. It performs skin segmentation in YCbCr color space as it is more

suitable for characterizing skin colors. It first converts an image from RGB

color space to YCbCr color space and then uses YCbCr color information

for further processing. In RGB color space, (R, G, B) components represent

not only color information but also luminance which may vary across a face

due to the ambient lighting. This makes (R, G, B) components an unreli-

able measure for separating skin from non-skin regions. YCbCr color space

separates luminance from the color information and hence, provides a way

to use only color information for segmenting skin and non-skin regions.

The distribution of skin colors of different people is found to be clustered

in a small area in the YCbCr color space. Although skin colors of different

people may vary over a wide range, they differ more in brightness than its

color. Due to this fact, skin color model is developed in YCbCr color space

and only chrominance components (Cb and Cr) are used for modeling the

skin pixels. Since color histogram of skin color distribution of different people

is clustered at one place in Cb, Cr plane, it can be represented by a Gaussian

model N(µ,Σ) with mean µ and covariance Σ. With the Gaussian fitted skin

color model, likelihood of skin for each pixel can be computed. If a pixel,

having transformed from RGB color space to YCbCr, has a chromatic color

vector x = (Cb,Cr)T , the likelihood P (x) of skin for this pixel can then be

obtained by

P (x) =
1√

2π|Σ|
exp[−1

2
(x− µ)Σ−1(x− µ)T ] (1)
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Likelihood values obtained in Eqn. (1) can be used to segment skin and non-

skin regions. An adaptive thresholding process [20] is applied on likelihood

image (obtained using skin likelihood values for all pixels) to compute an

optimal threshold. Skin segmentation is obtained by thresholding the skin

likelihood image using this threshold.

(a) (b) (c)

(d) (e) (f)

Figure 2: Skin Segmentation: (a) Input Image, (b) Skin-likelihood Image, (c) Binary
Image (d) Dilated Binary Image, (e) Skin Segmented Image, (f) Edge Image

4. PROPOSED TECHNIQUE

The proposed technique is based on the fact that in a side face image,

ear is the only part which contains much variation in the pixel intensities,

resulting this place rich in edges. This can be visualized from the image shown

in Fig. 2(f) which displays the edge image for the skin segmented image of

Fig. 2(e). It can be observed that the ear part has larger edge density
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Figure 3: Flow Diagram of the Proposed Technique

compared to other parts. Further, all edges belonging to the ear part contain

some curvature. These characteristics are exploited for ear localization. The

proposed technique computes edge clusters in the edge map obtained from

the side face image and examines them for ear localization. Flow diagram of

the proposed technique is presented in Fig. 3.

4.1. Preprocessing

Side face image undergoes a preprocessing phase before ear localization.

This involves skin segmentation, edge computation, edge approximation, con-

vex edge map construction and edge pruning.

4.1.1. Skin Region Detection

This step isolates skin regions of the side face image from non-skin parts.

Skin color model discussed in Section 3 is used for skin segmentation. This

model transforms a color image into a gray scale image (called skin-likelihood

image) using Eqn. (1) such that the gray value at each pixel shows the like-
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lihood of the pixel belonging to the skin. With an appropriate thresholding,

the gray scale image is further transformed to a binary image depicting skin

(white pixels) and non-skin (black-pixels) regions. Since people with differ-

ent skins have different likelihood, an adaptive thresholding process [20] can

be used to achieve the optimal threshold value for each image.

The binary image may contain some holes in it due to the presence of

noise in side face image. Dilation is applied to fill these holes before using

it for skin segmentation. The effect of this operation is to enlarge gradually

the boundaries of regions of foreground pixels (i.e. white pixels). Thus the

area of foreground pixels grows while filling holes within regions.

Fig. 2 considers an example of skin region detection with various inter-

mediate steps. For a color image given in Fig. 2(a), corresponding skin-

likelihood image is shown in Fig. 2(b). It can be noticed that skin regions in

Fig. 2(b) are brighter than the non-skin regions. Fig. 2(c) shows the binary

image obtained by thresholding the skin-likelihood image. Dilation is applied

on this image to repair it by filling small holes present in it. Fig. 2(d) shows

the repaired binary image. It is used for skin region detection where pixels

of the side face image corresponding to white pixels of the binary image are

considered as skin pixels. Fig. 2(e) shows the final skin segmented image. It

can be observed from segmentation result that not all detected skin regions

contain ear. Hence, ear localization can be used to locate the ear in all these

skin like segments.

4.1.2. Skin-region Edge Computation

Edge detection is carried out on skin segmented image using Canny edge

operator and a list of all edges is computed. An edge in the list is obtained
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by connecting edge points together into a sequence of pixel coordinate pairs.

Wherever an edge junction1 is encountered, the sequence is terminated and a

separate edge point sequence is generated for each of the branches and added

to the list. This generates a set of edges containing two end points. Let χ

be the set of all such edges.

4.1.3. Approximation of Edges using Line Segments

All pixels present in an edge (belonging to set χ) may not be equally

important and may not be necessarily required to represent the edge. So to

remove the redundant pixels from an edge and to get its compact representa-

tion, line segments are fitted to the edge. This keeps only those pixels which

are important. It breaks every edge present in the image into a set of line

segments. Line segments can be found by taking each array of edge points in

the set χ and finding the size and position of the maximum deviation from

the line that joins the endpoints. If the maximum deviation exceeds the al-

lowable tolerance, the edge is shortened to the point of maximum deviation

and the process is repeated. In this manner each edge is broken into line

segments, each of which adheres to the original data with the specified toler-

ance. Fig. 4(b) shows an example of edge approximation by line segments for

the edge image in Fig. 4(a). Let χls be the set containing all edges obtained

after line segments fitting.

1Edge junction is a pixel where an edge divides into two or more edges.
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(a) (b)

Figure 4: (a) Original Edge Image, (b) Edges Approximated by Line Segments

4.1.4. Construction of Convex Edge Map

It is observed that edges belonging to the ear have convex 2 nature. How-

ever, because of the presence of noise such as hair near the ear, often false

edges due to noise join true ear edges and make them non-convex. It may

lead to an improper ear localization. This usually happens with the outer

helix edges of the ear. To avoid this, the derived edges with set χls are bro-

ken into a set of convex edges. Let χconvex be the set of all convex edges.

Identification of convex and non-convex edges and breaking the non-convex

edges into convex can be done as follows.

Let there be an edge e obtained after approximation. Let e consist of k

line segments with ith line segment, li, having end points: ti and ti+1. Let

the line segment li be represented by vector −→v i = ti+1− ti. Let −→v i,i+1 be the

vector cross-product of −→v i and −→v i+1 (vector representing line segment li+1).

The edge e is convex if directions of −→v i,i+1, for all i, are found to be same.

To test whether an edge e is convex or non-convex, a decision parameter ρe

can be estimated as follows.

2Edges which have curvature throughout either positive or negative are considered
convex.
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Algorithm 1 Construction of Convex Edge Map

• Input: Set χls of edges approximated with line segments.

• Output: Set χconvex of convex edges.

1: Define a null set χconvex.
2: for ∀e ∈ χls do
3: Compute ρe using Eqn. (2).
4: if ρe == 0 then
5: Add e to χconvex.
6: else
7: Break e into a set of convex edges and add these edges to χconvex.
8: end if
9: end for

ρe =

{
0, if directions of vectors −→v (i,i+1), ∀ i, are same
1, otherwise

(2)

Thus the edge e is convex if ρe is 0. To break a non-convex edge into a set

of convex edges, it is scanned from one side to another and direction of each

cross-product is analyzed. When a cross-product is found to be of different

direction with respect to the previous cross-product, the edge is broken at

that point. This procedure is continued till whole edge is broken into convex

edges. Steps for construction of convex edge map are given in Algorithm 1.

Fig. 5 presents an example of testing and breaking of edges into convex

type. Fig. 5(a) shows two edges, one convex (edge ABCD) and another

non-convex (edge PQRS). Fig. 5(b) shows vector representation of the

line segments used in these edges and the direction of the cross-products for

adjacent vectors. Circle with a cross and circle with a dot at the joining

points of two vectors represent the outward and the inward directions of the
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(a) (b)

Figure 5: (a) Edge Map (b) Line Segments with Vector Representation

cross-product respectively. In edge ABCD of Fig. 5(a), it can be observed

that all cross-products are inward so this edge is marked as convex. In edge

PQRS of Fig. 5(b), one cross-product is inward while other is outward so the

edge is marked as non-convex. While scanning the edge PQRS from lower

side, direction of the cross-product at point R is found to be different from

the previous direction of the cross-product, so the edge PQRS is broken at

point R into two edges: PQR and RS.

Ear localization accuracy can be improved by converting all these edges to

convex type. Breaking of non-convex edges into convex helps in removing the

outlier edges (created due to noise). If the edges are converted to convex type,

while constructing the edge connectivity graph, most of the outlier edges get

isolated and do not appear in the connected component representing the ear

and hence, do not affect the ear localization result. Fig. 6 shows one such

example of ear detection. In Fig. 6(a), edge marked as A contains some

erroneous part at its lower side arose due to the linking of true ear edge to a

noisy edge present in the neck part. Due to this, when edge A participates in

the connected component representing ear, localization result includes some

skin portion from the neck which does not belong to the ear. Fig. 6(c) shows
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(a) (b) (c) (d)

Figure 6: (a) Edges before Convex Type Segmentation, (b) Edges after Convex Type
Segmentation, (c) Detected Ear when (a) is used, (d) Detected Ear when (b) is used

the localization result for this. When edge A is segmented into convex edges

B and C (Fig. 6(b)), lower part of the edge A (i.e. B after breaking) gets

isolated from the ear edge cluster and remaining ear edge cluster produces

the correct localization result. Fig. 6(d) shows the localization result for

this.

Any noise mainly affects the outer edge (helix) of the ear and hence,

conversion of non-convex edges to convex primarily helps in removing noisy

edges from the outer helix. Since detection of outer helix edge is difficult

and computationally expensive, in the proposed technique all the edges are

converted to convex type. However, conversion of non-convex edges present

in the inner parts of the ear to convex type does not have any impact on the

localization performance.

4.1.5. Curvature Based Edge Pruning:

All edges in set χconvex are of convex nature and are represented by line

segments. It can be seen that each edge in the set χconvex represented by

one line segment (or two points) depicts a linear edge in the original edge

map (set χ). Since all edges belonging to the ear contain some curvature,
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they need more than one line segment (or more than two points) for their

representation. In other words, all edges having two points cannot be the

part of ear edges and hence can be removed from the set χconvex. This results

a new edge set χc containing only the edges belonging to ear. Set χc can

be formally defined as: χc = {e | e ∈ χconvex and γ(e) > 2}, where γ(e) gives

the number of points used in edge e to approximate it by line segments.

4.2. Ear Candidate Set Generation

This phase builds an edge connectivity graph which is used for finding

the connected components in the graph to obtain ear candidate set.

4.2.1. Building Edge Connectivity Graph

The set χc can be used to define the edge map of the side face image.

Let there be n edges in χc. The ith edge ei in χc is defined by a point pi.

Thus χc can be represented by a set P of points p1, p2, .., pn where pi refers

to ei for all i. Against each edge ei, a convex hull3 CH(ei) is defined. If two

convex hulls CH(ei) and CH(ej) intersect each other, then points pi and pj

are connected through an edge of a newly defined graph G = (V,E) with the

set of vertices V and the set of edges E, where

V = {pi | pi ∈ P}

E = {(pi, pj) | CH(ei) intersects CH(ej)}

G is called edge connectivity graph. Algorithm 2 provides the steps invoked

in building the graph G.

3Convex hull for an edge is a tightest convex polygon which includes all edge points.
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Algorithm 2 Construction of Edge Connectivity Graph

• Input: Edge map χc of side face image I.

• Output: Edge connectivity graph G = (V,E).

1: Define a graph G = (V,E) where V and E are initially null.
2: Define a set P = {p1, p2, .., pn} for the n edges in set χc such that point
pi represents ith edge in set χc.

3: Define V = {pi|pi ∈ P}.
4: Define convex hull CHi for each edge ei, ei ∈ χc.
5: for all i, j ∈ [1, n] do
6: if CH(ei) intersects CH(ej) then
7: Connect points pi and pj by an edge (pi, pj) in graph G and add it

to E.
8: end if
9: end for

10: Return G.

One can observe that the ear edges are mostly convex in nature and if

one moves from outer part of the ear towards inside, most of the outer edges

contain inner ear edges. Due to this nature of ear edges, convex hulls of

the outer edges intersect the convex hulls of the inner edges. This guaran-

tees that the convex hull of an edge belonging to the ear intersects at least

another convex hull of the edge belonging to the ear. So this criterion to

define connection between vertices (points) in a graph connects (directly or

indirectly) all vertices belonging to the ear part with each other. Moreover,

this criterion is able to define the connectivity irrespective of the scale; as

a result, it makes the technique scale invariant. In general, property of one

edge containing another is not true for the edges belonging to other parts of

the side face image; so vertices corresponding to these edges remain mostly

isolated in the edge connectivity graph.
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(a) Synthetic Edges (b) Convex Hulls (c) Connectivity Graph

Figure 7: An Example of Construction of Edge Connectivity Graph

Fig. 7 shows an example of an edge map and convex hulls of edges. It

is seen from Fig. 7(b) that convex hulls of edges A, B and C intersect with

each other. So vertices corresponding to these edges are connected to each

other in the graph as shown in Fig. 7(c). Points D and E are isolated in

Fig. 7(c) since their respective convex hulls in Fig. 7(b) do not intersect to

convex hull of any other edge.

It can be noted that there can be some simple criteria to define the con-

nectivity among the vertices in edge connectivity graph. One such criterion

may be based on some distance metrics between two edges. However, such

choice makes ear detection scale dependent. This is due to the fact that

the distance threshold required to define the connectivity among the vertices

may vary for the images of different scales.

4.2.2. Connected Component Computation

Two vertices are in the same connected component of an undirected graph

if there exists a path between them. After defining the graph for the edge

map of side face image, its connected components are computed. These

components are analyzed one by one to localize the ear. To compute the
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(a) (b) (c)

Figure 8: (a) Edge Map (Colors used to Differentiate Edges), (b) Graph for the Edge Map
of (a) with Connected Components Labeling, (c) Magnified View of Component A of (b)

connected components in the graph G = (V,E), we have used a breath first

search based algorithm described in [23].

Fig. 8 presents a real example of edge connectivity graph and connected

components labeling. Fig. 8(a) shows an edge image obtained from a side

face image. A graph, shown in Fig. 8(b), is constructed for this edge im-

age and connected components (enclosed inside rectangular boundaries) are

computed. Magnified view of the component A present in Fig. 8(b) can be

seen in Fig. 8(c).

4.2.3. Ear Candidate Set Computation

Ideally, it is believed that the vertices representing ear edges are con-

nected to each other (directly or indirectly) and form one connected com-

ponent while all other vertices representing non-ear edges remain isolated.

Hence the criterion based on the size of the component can be used to find

out the connected component representing ear. However, there may exist

few more places in the side face where due to noise a convex hull of one edge

may intersect that of other edges and give rise to a large connected com-
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ponent. Hence, each connected component in the edge connectivity graph

which have two or more vertices is considered as a probable candidate to

represent the ear. Connected components which have single vertex can be

straightaway removed from the graph as they cannot represent the ear. Let

K = {K1, K2, .., Km} be the set of connected components of graph G where

each component has two or more number of vertices. Average vertex degree

of a connected component Kj is defined as:

d(Kj) =
Σ
nj
i=1d(pi)

nj
(3)

where d(pi) is the degree of vertex pi and nj is the total number of vertices

present in component Kj. As stated earlier, ear part of the side face image

is rich in edges due to large intensity variations present in this region; hence,

it is less probable that a connected component representing an ear has only

two vertices or average vertex degree one. Therefore, to further prune out

the false connected components, only the components having average vertex

degree greater than one can be considered to obtain probable ear candidates.

A probable ear candidate in a side face image is defined as the image portion

which is cropped using the bounding box of the edges participating in a

connected component. A set of ear candidates is computed using all the

connected components satisfying the criterion on the average vertex degree.

Algorithm 3 presents the steps to generate ear candidate set using connected

components.
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Algorithm 3 Computation of Ear Candidate Set

• Input: Set K = {K1, K2, .., Km} containing m connected components
of G.

• Output: Set IE containing the image portions cropped from the side
face which are the probable candidates for ear.

1: for j = 1 to m do
2: d(Kj) = 1

nj
Σ
nj
i=1d(pi), pi ∈ Kj and d(pi) is the degree of vertex pi, nj

is the number of vertices in Kj.
3: end for
4: Define set P = {j|d(Kj) > 1}
5: Define set E = {E1, E2, .., Eη} where η is the cardinality of set P and
Ej = {ei|pi ∈ Kj, j ∈ P} contains edges with the edge ei represented by
point pi in G as discussed in Section 4.2.1.

6: Define B = {Bk|Bk is the bounding box of the edges present in Ek}.
7: Obtain IE = {Ik|Ik is cropped image from side face using Bk ∈ B}.
8: Return IE.

4.3. Ear Localization

It is carried out by identifying the true ear among the probable ear candi-

dates with the help of an ear template which is created off-line. The template

works as an ear representative which depicts the characteristics of ears of var-

ious scales, rotations and shapes. Identification is performed by comparing

the probable ear candidates with the ear template.

4.3.1. Ear Template Creation

To identify true ear, the template used for ear identification should ex-

hibit the characteristics of scale and rotation invariance. To compute such

a template in the proposed technique, a shape descriptor which is invariant

to rotation and scale, is used. Among several scale and rotation invariant
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(a) SURF Feature Points (b) Matching

Figure 9: Example of SURF Features and Matching

shape descriptors, SURF [24] provides good distinctive features and at the

same time it is robust to changes in viewing conditions, rotations and scales.

SURF represents an image by first identifying some unique feature points in

it and then by describing them with the help of a feature descriptor vector.

Fig. 9(a) shows an example of SURF feature points. For the description of

the feature points, SURF uses intensity content within the neighborhood of

feature point and describes it by using the sum of approximated 2D Haar

wavelet components. Typically, a SURF feature point is represented by a

64-dimensional descriptor vector.

The ear template is computed by fusing the SURF feature descriptors

obtained from various ear images together considering the redundant features

only once. Let n be the number of ear images used for template creation. Let

T1, T2, .., Tn be the SURF feature descriptor sets obtained from these images.

A fused ear template T is obtained by

T =
n⋃
i=1

Ti (4)

Let the set Ti contains ci feature descriptor vectors. The total number of

descriptor vectors c present in T satisfies the inequality c ≤
∑n

i=1 ci. Fusion
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of the SURF feature descriptor sets is done incrementally where first two

sets T1 and T2 are fused to generate a new intermediate feature descriptor

set which is further fused with feature descriptor set T3. This process is

continued till all sets are fused together. While fusing two SURF feature

descriptor sets Ti and Ti+1, SURF matching is performed between the two

sets to find out the redundant feature descriptor vectors. If a descriptor

vector in a template matches to a descriptor vector in another template, it

is considered as common to both and is used only once in fusion. Fig. 9(b)

shows an example where matching points between two ear images are shown.

If a feature point xi from the first ear image matches to a feature point yi in

the second ear image, either descriptor for xi or for yi is used in generation

of fused feature descriptor set.

It can be noted here that attempts have been made to utilize the power of

invariant feature points in other ear biometric systems as well. For example,

Bustard and Nixon [25] have used Scale Invariant Feature Transform (SIFT)

[26] feature points for registration of probe and gallery image before matching

to perform ear recognition.

4.3.2. Ear Identification

Let the ear candidate set be IE = {I1, I2, .., Iη} where η is the cardinality

of set IE and Ik is the image portion of the side face image representing

kth probable ear candidate, k = 1, 2, .., η. For identification purpose, SURF

feature descriptor set is computed for all the ear candidates present in IE.

Identification of true ear is performed by comparing the ear template with

the SURF descriptor sets of the ear candidates present in IE. Comparison

between two SURF descriptor sets is performed using SURF matching which
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uses the ratio-matching scheme [26] to find out the number of descriptor

vectors matching between the two sets. Let Di and Dj be two descriptor

vectors from sets S1 and S2 respectively. Let d(Di, Dj) be a distance metric

between the descriptor vectors Di and Dj. The descriptor vector Di is said

to be matched with Dj if

d(Di, Dj) < ρ× d(Di, Dk), Dk ∈ S2, k 6= j,∀k (5)

where ρ is a constant lying between 0 and 1. Very small value of ρ gives a

tighter matching while a large value of ρ provides a relaxed matching.

Let TE = {TI1 , TI2 , .., TIη} be the SURF feature descriptor sets for the ear

candidate images present in IE. To obtain the true ear, SURF matching is

performed between ear template (T ) and all elements present in TE and a

match score vector MatchScore is generated. SURF matching between two

descriptor sets returns the number of matched points between them. The

true ear candidate Iξ is obtained such that

ξ = arg max
i
{MatchScore[i]}

That means, the ear candidate from IE for which SURF match score is

maximum, is declared as the true ear candidate. Algorithm 4 provides steps

involved in ear identification process.

5. SCALE, ROTATION AND SHAPE INVARIANCE

In the proposed technique, there are two major steps which play key

roles in ear localization. First step is the construction of edge connectivity
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Algorithm 4 Ear Identification using SURF Descriptive Ear Template

• Input: Set IE = {I1, I2, .., Iη} containing η probable ear candidates
and off-line created ear template T .

• Output: Iξ which is the true ear.

1: Define set TE = {TI1 , TI2 , ..TIη} where TIi represents SURF feature de-
scriptor set for the ear candidate Ii ∈ IE.

2: for i = 1 to η do
3: MatchScore[i] = SURFmatch(T, TIi).
4: end for
5: ξ = arg max

i
{MatchScore[i]}.

6: Return Iξ.

graph which is used to detect probable ear candidates while second one is the

identification of true ear among probable ear candidates using ear template.

Construction of edge connectivity graph is made scale invariant by defining

the connectivity among the vertices in the graph using intersection of con-

vex hulls of corresponding edges. Such criterion to define the connectivity is

unaffected by scale changes. Also, intersection of two convex hulls is unaf-

fected if both are rotated; hence rotation also does not influence the process

of defining the connectivity of two vertices in the graph. It can be observed

that there is no significance of shape invariance at this step.

Rotation, scale and shape invariance at ear identification step is obtained

by defining an ear template which exhibits these properties. It is achieved

by using SURF feature descriptor for ear template creation which provides

rotation and scale invariant description of ear feature points. An ear template

is defined as a collection of rotation and scale invariant descriptor vectors

obtained from multiple training ear images. Shape invariance is achieved
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by choosing the ears of different shapes from the database to define the ear

template.

6. EXPERIMENTAL RESULTS

The technique has been tested on two databases, namely IIT Kanpur

(IITK) database and University of Notre Dame database (Collections E and

J2) [27]. IITK database consists of three data sets. Data Set 1 contains 801

side face images collected from 168 subjects, 2 or more images per subject.

These images include frontal view of the ears. Few sample images from Data

Set 1 are shown in Fig. 10(a). Data Set 2, whose acquisition setup is shown

in Fig. 12(a), contains 801 side face images collected from 89 subjects, 9

images per subject for various in-plane rotations and scales. Images contains

frontal view of the ear taken at three different positions, a person looking

straight, the person looking at 200(approx) down and looking at 200(approx)

up. At all these 3 positions, images are captured at 3 different scales by

setting the digital zoom of the camera at 1.7x, 2.6x and 3.3x and positioning

the camera at a distance of about 1 meter. Fig. 10(b) shows 9 images from

Data Set 2 captured for an individual. Data Set 3, whose acquisition setup

is shown in Fig. 12(b), contains complex images captured for various out-of-

plane rotations from 107 subjects. The camera is moved on a circle with the

subject assumed to be at the center of the circle. Camera facing the frontal of

the ear is considered as 00. Side face images are captured at −400, −200, 00,

+200 and +400 placing the camera tripod at fixed landmark positions. Two

images for each pose (angle) are obtained, producing 10 images per subject.

Database contains 1070 images from 107 subjects. Fig. 11 shows a sample
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Table 1: Gaussian Parameters used for Skin Segmentation in IITK and UND Databases

Data Set Mean (Cb,Cr) Covariance (Cb,Cr)

IITK Data Sets
(

102.35
154.52

) (
71.76 9.95
9.95 111.77

)
1, 2 and 3

UND-E Data Set

(
90.65
170.23

) (
55.55 −4.79
−4.79 107.19

)
UND-J2 Data Set

(
109.48
148.31

) (
55.74 41.76
41.76 93.62

)

snapshot of angular posed side face images for a subject.

Further, Collection E (UND-E) and Collection J2 (UND-J2) of University

of Notre Dame database are used for the experiment. UND-E consists of 464

side face images collected from 114 subjects, 3 to 9 samples per subject.

Images are collected on different days with different conditions of pose and

illumination. UND-J2 consists of 2414 side face images collected from 415

subjects. For the experiment, 1780 2D side face images are considered, after

removing all duplicate images. Few sample images from UND database are

shown in Fig. 13.

6.1. Estimation of Parameters

Skin parameters used for skin segmentation are computed for each data

set separately by collecting skin samples from them. Table 1 summarizes

skin parameters for various data sets. Minimum and maximum thresholds

used in Canny edge detector are 0.0 and 0.1 respectively while σ is is set to

1.0 for IITK database and 2.0 for UND database. Value of σ is kept little

high for UND database as images in it are noisy. Distance tolerance for edge

approximation is set to 20 for both the databases.
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(a) Data Set 1

(b) Data Set 2

Figure 10: Sample Images from IITK Database

(a) −400 (b) −200 (c) 00 (d) 200 (e) 400

Figure 11: Sample Posed Images for an Individual from IITK Data Set 3

(a) Data Set 2 (b) Data Set 3

Figure 12: Data Acquisition Setup used in IITK Database

(a) UND-E Data Set (b) UND-J2 Data Set

Figure 13: Sample Images from UND Database

28



Figure 14: Ear Detection: Row-1) Original Input Images, Row-2) Edge Maps Approxi-
mated with Lines (Colors used to Distinguish Edges), Row-3) Edge Connectivity Graphs
(Graph Components having Average Vertex Degree > 1 Enclosed in Rectangles), Row-4)
Ear Detection Results
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(a) Data Set 1

(b) Data Set 2

Figure 15: Ear Detection Results for IITK Database

Ear template for each data set of IITK and UND databases has been

created separately as the nature of the data present in each set is entirely

different. Few images are randomly selected from each data set to compute

ear templates. It is found that 50 images from a data set are sufficient to

capture the properties of the ears for creating a good ear template. The ratio

value ρ used in SURF matching for template creation is taken as 0.5 whereas

for true ear identification, it is set to 0.7. Since for template creation, SURF

matching is performed between the ear images, a lower value of ρ (which gives

tighter matching) helps in capturing the distinct features of the ears. Ear

identification is used to discriminate ear and non-ear candidates and hence

matching is relaxed and little higher value of ρ is used.

6.2. Results

Fig. 14 provides the results obtained at various steps of the ear detection.

It shows the original input images, side face edge maps approximated with

lines, edge connectivity graph and ear detection results. Accuracy of ear
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Table 2: Percentage Accuracy for IITK Database

Data Set
# of Test Ear Localization Accuracy (%)

Images Reported in [19] Proposed Method

Data Set 1 801 95.88 99.25
Data Set 2 801 94.73 98.50
Data Set 3 1070 91.11 95.61

localization is defined by

Accuracy =
Number of Correct Localizations ×100

Total Test Samples
% (6)

Fig. 15(a) shows the ear detection results for Data Set 1 of IITK database

which contains normal frontal ear images. To show the rotation (pose) and

scale invariance of the proposed technique, Data Set 2 of IITK database is

used. Fig. 15(b) gives few results from Data Set 2 where ears of different

sizes and rotations are efficiently detected without any user intervention and

change of parameters. The proposed technique has also detected ears success-

fully for the images of Data Set 3 of IITK database (where images contain

out-of-plane rotations) even for the extreme poses (−400 and +400). Fig.

16(a) shows detection results for few images taken from Data Set 3. Further,

few ear localization results for extreme poses (−400) where ear localization is

found to be very challenging are shown in Fig. 16(b). The technique has lo-

calized ears precisely for almost all extreme cases. Since it uses edge property

of the ear and not the shape, it exhibits shape invariance. It has detected

ears of all shapes (viz. round, oval, triangular, rectangular) successfully.

Table 2 summarizes ear detection results for IITK database. It is seen that
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(a) Detection Results for two Subjects

(b) Detection in Extreme Views

Figure 16: Ear Detection Results for IITK Database (Data Set 3)

accuracy for Data Set 1 is the highest as it contains frontal ear images. In such

images, full ear structure is visible and good amount of edges are obtained

which help in achieving strong connectivity among the edges representing

ear. Accuracy for Data Set 2 is comparable with that of Data Set 1, in spite

of images having variations in scale and rotation. This is due to the fact that

the proposed technique exploits the structural details of the ear which do not

change with scale and rotation. Data Set 3 shows the least accuracy among

all data sets of IITK database. This is because in the presence of out-of-

plane rotation, the availability of the structural details of the ear decreases

as camera moves away from the frontal position. Ear localization results for

IITK database are compared in Table 2 with the results reported in [19].

It is evident that the proposed technique performs much better than the

technique discussed in [19]. This improvement is achieved due to following
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reasons:

1. The proposed technique breaks the derived edges of the side face into

a set of convex edges to reduce the participation of noisy edges in the

cluster of true ear edges.

2. The proposed technique has used a rotation, scale and shape invariant

ear template which depicts the characteristics of ears of various scales,

rotations and shapes. Identification of the true ear is performed by

comparing the probable ear candidates with the ear template. Use

of rotation, scale and shape invariant ear template greatly helps in

localization of ears of various poses, scales and shapes.

3. Identification of true ear among the probable ear candidates with the

help of an ear template results into much better and robust ear local-

ization and reduces false positives. But, the technique in [19] performs

ear localization merely based on the size of the connected components

which often leads to wrong ear localization as there may exist a cluster

of the largest size of non-ear edges.

4. The performance obtained in the proposed technique is found to be

robust and stable on a larger data set as compared to [19].

Results for University of Notre Dame (UND) database are shown in Fig.

17 while their localization accuracies are given in Table 3. Accuracy is found

to be less as compared to IITK database due to following reason. Hair color of

many subjects in UND database is similar to their skin color. Since strength

of the proposed technique is derived from the successful detection of skin

regions, similarity of the hair color with skin reduces the performance of skin
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(a) UND-E Data Set
(b) UND-J2 Data Set

Figure 17: Ear Detection Results for UND Database

segmentation and in turn, affects the ear localization accuracy and increases

false positives.

Table 3 also shows comparative performance of some well known tech-

niques on UND database. It is seen from the table that [10] produces low

detection rate as compared to the proposed technique. Moreover, it makes

the assumption that the ear is the principal elliptical shape in the image

which limits its use to the controlled environment and frontal ears, as the

presence of background objects or posed ear may lead to false detections.

Table 3: Percentage Accuracy for UND Database

Technique Data Set # of Test Images
Localization

Accuracy (%)

[10] Part of UND-J2 942 91%
[15] Part of UND-J2 203 100%

Proposed
UND-J2 1780 96.63%
UND-E 464 96.34%
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The technique discussed in [15] achieves good detection rate, but the size of

the test data set is very small (only 203 images). Also, if the test ear images

are rotated or their appearances are changed with respect to training data,

this technique may fail because the training images may not include such

cases. Forming a database of ears with all possible rotation demands very

large space and practically not feasible. Also to detect the ears of different

scale, the technique should perform an exhaustive search with filters of var-

ious sizes which is computationally very expensive and makes the technique

infeasible for real applications. On the other hand, the technique proposed in

this paper can inherently handle rotation (pose) and scale changes and does

not incur any extra computational overhead to achieve this. Also, it is tested

on a very large data set of 4916 images comprising of rotated (in-plane and

out-of-plane) and scaled images which dictates the stability and robustness

of the technique. A detailed comparison of [15] with the proposed technique

is given in Table 4.

Performance of the proposed technique could not be compared with [5]

because of the non-availability of the test results. Also comparisons could

not be made with [17, 18] as these techniques have used XM2VTS database

[28] which is not available. However, it can be noted that XM2VTS database

is relatively easy to work because it contains images captured in plane back-

ground with controlled illumination and comprises of good quality images

whereas UND images contain non-uniform cluttered background, poor illu-

mination and pose variations.

The proposed technique has failed to detects ears fully or partially in

some cases of IITK and UND databases. Failure has occurred when ears are
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Table 4: Comparison with the technique discussed in [15]

Techniques
Parameters [15] Proposed Technique

Time per detection
26.40 Seconds 7.95 Seconds

(same configuration)

Training Overhead

More. To train Very Less. Only required
classifiers with 1000s to learn skin parameters
of positive and negative and ear template using
samples few 100 samples

Invariant to
(i) Rotation No Yes
(ii) Scale No Yes
(iii) Occlusion Up to some extent No
Total Test Data Size Very small (307 images) Large (4916 images)

No scaling, Good amount of scaling
Test Data Minor pose and rotation (IITK Data

variation Sets 2 and 3)

occluded by hair or affected by noise and poor illumination. Few examples

of failure in detecting ears due to these reasons are shown in Figure 18.

7. CONCLUSIONS

This paper has proposed an efficient technique for automatic ear localiza-

tion from the side face which can be employed to automate an ear biometric

(a) (b) (c) (d)

Figure 18: Few Failure Cases from IITK and UND Databases
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system. The technique can detect ears of different rotations (poses), scales

(sizes) and shapes efficiently and does not require any prior knowledge of

rotation, shape or size of the ear for localization. It has been tested on 4916

side face images of IITK and UND databases. IITK database includes im-

ages of various rotations (in-plane and out-of-plane), scales and shapes while

UND database consists of frontal ear images with variable background, var-

ied contrast, pose variations and illumination changes. It has been found to

provide very good ear detection accuracy for both the databases.

Comparing to the well known ear detection techniques, the proposed tech-

nique is found to be unique and significant in many aspects. It is the first

technique proposed for ear localization which is rotation (in-plane and out-

of-plane), scale and ear shape invariant. It can detect both left and right ears

without any prior information. It does not require any kind of user interven-

tion for ear localization. It has addressed the issues that has plagued earlier

attempts of ear detection, specifically for rotated and scaled ear images.
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